當前位置:首頁 » 證券市場 » 債券市場和期限結構
擴展閱讀
股票投資經濟學 2021-06-17 16:24:20

債券市場和期限結構

發布時間: 2021-06-15 03:36:24

1. 債券的期限結構的計算方法

看看如下網上摘錄就會有所了解:在國債市場上,利率期限結構是一個重要的概念。研究我國國債利率期限結構,對於我國有著重要的理論和現實意義。目前,我國正在進行利率的市場化改革,其中基準利率的確定是關鍵的一步。隨著我國國債市場的發展,合理的國債利率期限結構,能為基準利率的確定提供參考。同時,我國正准備大力發展金融衍生產品,金融衍生產品交易所也即將在上海成立。只有準確估計利率期限結構,為衍生產品提供定價基礎,獲得合理的衍生品價格,才能促進金融衍生品市場的健康發展。

國債市場利率期限結構概述

傳統利率期限結構研究有三大理論:預期理論,市場分割理論以及流動性偏好理論。它們的問題是只解釋了長短期利率差異的原因,不能准確地說明利率的動態變化。現代的利率期限結構理論把利率的運動假設為隨機變動過程,以短期利率或短期利率的波動率為變數建立隨機模型來模擬描述現實世界的利率變化。在現代利率期限模型中,通常有兩部分所構成:一是所謂的漂移項(draft term),二是所謂的波動項部分(variance term)。通常在大部分的利率結構模型中,認為利率變動的漂移項部分有所謂的均值回歸(mean reversion)現象,即短期利率受長期平均利率的吸引:當短期利率上漲時,會有力量自然使其下降,向長期平均利率靠攏;當短期利率下降時,會有力量使其上升,從而不偏離長期利率水平。而在波動項的設定上.較早的模型通常假定利率的波動性是固定的,但由於與實際不符,便開始有模型將利率的波動性假定為利率水平的函數,也就是所謂的利率水平項效應(level effect)。現代隨機利率期限結構模型主要有均衡模型和無套利模型。

由於國內的利率市場尚未放開以及債券市場規模不大,利率期限結構方面的研究相對國外來說相對落後,並且多為實證分析。陳雯、陳浪南(2000)首次利用連續復利的到期收益率對中國債券市場的利率期限結構進行了靜態估計,但是他們的檢驗沒有將息票債券的到期收益率和無息票債券的到期收益率區別開來。朱世武,陳建恆(2003)用三次多項式樣條函數方法對交易所國債利率期限結構進行了實證研究。鄭振龍,林海(2003)分別採用息票剝離法,以及多項式樣條函數法靜態估計了中國市場利率期限結構。范龍振(2003)採用兩因子Vasicek模型估計了上交所債券利率期限結構。周榮喜,邱菀華(2004),基於多項式樣條函數對利率期限結構模型進行了實證比較。謝赤,吳雄偉(2002)基於Vasicek模型和CIR模型實證分析了中國貨幣市場利率行為。任兆璋.彭化非(2005)用時間序列模型對我國的同業拆借市場進行了利率期限結構的實證分析。王曉芳.劉鳳根.韓龍.(2005)以上交所債券價格隱含的利率期限結構數據作為分析對象,利用三次樣條函數構造出了中國的利率期限結構曲線,並對其作了相關的評價。從上面可以看出,國內實證研究多以國債市場為對象。研究方法以多項式樣條函數法居多,並且樣條函數取三次函數,節點的選取多為3個。這是因為多項式樣條函數方法要比理論模型像Vasicek模型更有實用價值,估計的結果更好。

實證模型推導和數據說明

(一)基本概念

1.國債品種結構。目前國債按付息方式可以分為:零息國債和附息國債零息國債在存續期內不支付利息,到期一次還本付息。我國在1996年以前發行的國債均屬此類。附息國債的利息一般按年支付,到期還本並支付最後一期利息。

2.債券的價格計算。債券的價格可通過如下的公式來計算。



其中Fi表示第i次支付的現金數目(利息或本金),ti′表示第次付現的時間,m表示付現的次數。P(t,T)表示t時刻到期日為T的債券的貼現價格。Fi,P(T,t),m,T對於每一種債券來說都是已知的確定的,因為我們假設國債是無風險的。只有隱含在債券價格中的貼現函數D(ti)是待估計的。D(ti)=e-r(ti)ti,其中的r(ti)即為以復利形式表示的利率期限結構的表達式。

3.國債各種收益率概念。(1)名義收益率。名義收益率=年利息收入÷債券面值×100%。通過這個公式我們可以知道,只有在債券發行價格和債券面值保持相同時,它的名義收益率才會等於實際收益率。例:某債券面值為100元,年利率為6%,那麼債券的名義收益率就是票面利率6%。(2)即期收益率。即期收益率也稱現行收益率,它是指投資者當時所獲得的收益與投資支出的比率。即:即期收益率=年利息收入÷投資支出×100%。例:某債券面值為100元,票面年利率為6%,發行時以95元出售,那麼在購買的那一年投資人即期收益率為100×6%÷95×100%=6.32%。(3)持有期收益率。由於債券可以在發行以後買進,也可以不等到償還到期就賣出,所以就產生了計算這個債券持有期的收益率問題。持有期收益率=[年利息+(賣出價格-買入價格)÷持有年數]÷買入價格×100%。例:某債券面值為100元,年利率為6%,期限5年,每年付息一次。我以95元買進,我預計2年後會漲到98元,並在那時賣出,要求我的持有期收益率。則我的持有期收益率為[100×6%+(98-95)÷2]÷95×100%=7.89%。(4)到期收益串。到期收益率是指投資者在二級市場上買入已經發行的債券並持有到期滿為止的這個期限內的年平均收益率。到期收益率的計算根據當時市場價格、面值、息票利率以及距離到期日時間,也假設所有息票以同樣的利率進行再投資。到期收益率是度量不同現金流、不同期限債券的回報串的一個公認指標。

(二)多項式樣條法

多項式樣條法是由McCulloch[9,10,11)提出的,它的主要思想是將貼現函數用分段的多項式函數來表示。

從上面提到的債券的價格公式,我們知道,要求利率期限結構函數r(ti),首先要估計出D(ti)。

K階多項式樣條函數法假設貼現函數D(ti)具有如下的形式:



其中節點t1t2……的位置和數目的確定,理論上並沒有統一的方法。

然後根據節點處要保證k-1階連續的原則,找出各參數之間的關系,減少參數的個數。滿足如下的方程



根據樣本估計出D(ti)中所包含的參數,從而求解出債券中隱含的利率期限結構r(ti)。

本文中,我們選定多項式樣條函數的階數為3。因為如果階數過小,如當多項式樣條函數為二階時,D(t)的導數D(2)(t)是離散的;而當階數過高時,驗證D(t)的三階或四階函數是否連續的難度很大。

三階多項式樣條函數的形式如下:



同時,為了保證分段函數的平滑和連續,貼現函數還需滿足以下約束條件:



在函數分界點的選取上,我們參照國內國債期限結構實證檢驗上的一般做法,選取5年和8年作為函數的分界點。這樣,再加上約束條件,我們就能確定最終函數的具體形式。



可以看出,多項式樣條函數的方法事先假設了貼現函數的.形式,是一種典型的參數估計的方法。為了估計參數,我們使用線性最小二乘法進行估計。

(三)最小二乘法

最小二乘法是估計隨機變數參數最基本的方法,也是在計量經濟分析中運用最早最廣泛的參數估計方法。

最小二乘法的基本原理是根據隨機變數理論值與觀測值的偏差平方和最小來估計參數。

設y是K個隨機變數X1,,…XK的函數,含有m個a1,…,am參數,即


如果,是參數a1,…,am的估計,那麼就是y的估計值。如果有n個y和X1,…,XK的樣本(X1i, ,…Xki,ut),i=1,…,n,那麼代入上面的估計方程y=f(a1,…,…am;X1,…,…XK)就可以得到n個。n個和y的偏差情況就反映了參數估計量的好壞。如果一組參數使得估計值和觀測值的誤差平方和最小,那麼這樣的參數就稱為最小二乘估計參數。

實證研究

(一)數據選取

本文採用上海證券交易所交易所2006年4月28日和5月8日的國債收盤數據做為樣本。所有44隻國債均為固定利率的,其中有5隻為半年支付一次利息,一隻為每月付息一次,三隻貼現債券,其餘均為每年付息一次。

選取的是兩天的數據,這樣就可得到兩條利率期限結構曲線。我們就可以分析五一長假前後,國債市場的期限結構是否發生了改變,發生了怎樣的改變。

(二)實驗結果以及結果分析



用matlab軟體編寫程序,並將數據輸入,運行程序最終的得到的參數估計值如下:

2006年4月28日

d1=0.000626 c1=-0.008315 b1=-0.004094 d2=-0.000024 d3=0.000003,

2006年5月8日

d1=0.000624 c1=-0.008065 b1=-0.005127 d2=-0.000024 d3=0.000003,

得到如下的利率期限結構如圖1所示。可以看出,擬合的結果很好,兩條曲線很光滑。國債市場的利率期限結構是一條上凸的曲線,長期利率高於短期利率。並且從4月28日和5月8日兩條利率期限結構曲線可以看出,短期利率上升,而長期利率變化不大,三月期利率上升了近40個基點。

由理性預期假說可知,從長期來看,短期利率有上升的預期。可以這樣來解釋,投資者預期我國整體宏觀經濟會繼續保持良好的運行態勢,對經濟前景充滿信心,投資需求進一步上升,從而對於資金的需求會增加,導致長期利率高於短期利率。

另一方面,今年一季度經濟增長過快,一季度GDP增速為10.2%,已經超過全年控制在8%的發展預期。央行有可能採取較為緊縮的貨幣政策來調控經濟,這也在一定程度上導致了短期利率的上升。中國人民銀行宣布,從4月28日起上調金融機構貸款基準利率,金融機構一年期貸款基準利率上調0.27個百分點,由現行的5.58%提高到5.85%。雖然國債市場和信貸市場屬於兩個不同的市場,但是通過影響投資者的資金狀況,這一貨幣政策信號很快地傳遞到了國債市場,導致了短期利率的上調。

整體來講,國債市場的利率水平低於人民幣貸款利率而稍高於存款利率。以一年期利率為例,國債利率介於1.9和2.0之間,而扣除利息稅之後的定期存款利率為2.25*0.8=1.8,相應的貸款利率為5.85。

由於國債是以國家的信用作擔保的,在我國當前情況下無違約風險,故國債利率可視為無風險利率。而人民幣貸款是有一定違約風險的,故其利率有風險補償因子,貸款利率高於國債利率是應該的。人民幣存款利率同樣也是無風險的利率,同時考慮到國債市場的流動性要高於定期存款,理論上來講國債利率應該和存款利率相差不大,甚至略低於存款利率。因此,如果存款利率放開,其利率水平有上升空間。

(三)利率互換模擬定價:

今年年初的利率市場化改革有很多新舉措。最耀眼的當屬人民幣利率互換的推出。今年1月24日,人民銀行發布(關於開展人民幣利率互換交易試點有關事宜的通知)。2月9日,人民銀行正式推出人民幣利率互換試點。2月9日,國家開發銀行與中國光大銀行完成了首筆人民幣利率互換交易。名義本金為人民幣50億元,期限10年,光大銀行支付固定利率、開發銀行支付浮動利率。3月8日,全國銀行間同業拆借中心發布公告稱,自3月8日起正式對外發布銀行間回購定盤利率。從某種意義上可以說,宣告了中國的「LIBOR」的誕生,並為利率相關衍生產品的定價提供了基礎。

我們假設有這樣一份互換合約。A銀行和B銀行都有本金為50億的借款,期限均為一年。A銀行的借款為固定利率的,利息為2.25%。B銀行的借款為浮動利率的,到期時要支付當天一年期零息票國債的收益率 (即為到期日國債市場一年期利率)。A銀行和B銀行於2006年5月8日簽訂互換合約,A銀行到期支付浮動利率,B銀行到期支付固定利率,則可算出這份互換合約的價值:

2007年5月8日國債市場一年期利率的R07,1,1期望值為



由圖1可得,1+R06,1=1.01985,1+R06,2=1.0221,帶入可得

1+ER07,1=1.0244

故該互換的價值為

其中L*(ER07,1-0.0225)為B銀行期望的現金流,而1+R06,1為貼現因子。故B應該應向A銀行支付0.093億元來購買該互換合約。這是因為該和約對B銀行來講,預期是正的現金流。而A銀行則面臨負的現金流,故B銀行應補貼A銀行。

幾點結論

本文綜述了國內外利率期限結構研究的進展。通過三次樣條函數建立模型進行實證分析,我們可以得到如下的結論:

1.三次樣條函數可以較好的擬合我國國債市場的利率期限結構

2.當前國債市場的利率期限結構是一條上凸的曲線,形狀能夠較好的反映了宏觀經濟對資金的需求情況。

3.我國短期利率有上升的趨勢,長期利率表現較為穩定,反映了投資者對經濟長期運行態勢的信心。

4.與市場化程度很高的國債市場利率相比,存款利率較低。如果放開存款利率,有上升的空間。

2. 什麼是債券市場

債券市場是發行和買賣債券的場所,是(金融市場)一個重要組成部分。債券市場是一國金融體系中不可或缺的部分。一個統一、成熟的債券市場可以為全社會的投資者和籌資者提供低風險的投融資工具;債券的收益率曲線是社會經濟中一切金融商品收益水平的基準,因此債券市場也是傳導中央銀行貨幣政策的重要載體。可以說,統一、成熟的債券市場構成了一個國家金融市場的基礎。

3. 什麼是利率期限結構我國國債市場上利率期限結構的計算方法是什麼

債券的利率期限結構是指債券的到期收益率與到期期限之間的關系。該結構可以通過利率期限結構圖表示,圖中的曲線即為收益率曲線。或者說,收益率曲線表示的就是債券的利率期限結構。

計算方法:http://www.chinabond.com.cn/chinabond/yjck/content.jsp?sId=771

如果我們可以在市場上找到足夠的即期利率,再加上其相應的期限就可以得到一系列的實數對,在給定一個模型形式之後就可以用統計的方法把這個期限結構模型估計出來。但是,實際上我們很難找到足夠的即期利率,因為市場上零息債券的數量很少。我們只能轉向對固定利率債券進行息票剝離的方法。此時又一個問題出現了-在關鍵的期限上(例如1年)未必有現金流,無法求得該即期利率,致使我們不能進行後續期限的息票剝離。為了解決這個問題,我們有必要預先設定利率期限結構的模型形式,
,其中y代表即期利率,θ代表期限。
根據債券的定價方法,對於某隻固定利率債券,我們可以先把它拆分成若干付息和還本的現金流,用上面假設的利率函數進行折現得到該債券的理論價格 ,當然理論價格 和市場價格P是有差別的,一般不會相等。用公式表示就是:

上式中, 表示債券i 的理論價格, 表示債券i 所包含的在未來時間t 發生的現金流, 表示與時間t對應的貼現函數值,可以通過上面的利率函數換算出來,Ф表示貼現函數的參數向量(或矩陣), 是隨機誤差。
根據最小二乘法估計的要求,我們當然希望參數向量(矩陣)Ф應滿足使樣本券的定價誤差(理論價和實際價格的差別)最小。若以n只樣本債券得的總定價方差作為目標函數,Ф應滿足使 成立。其中n為樣本債券容量。這里,誤差的權重均為1/n,相當於我們認為各個樣本券的定價誤差都同等重要。我們也可以根據自己的理解為樣本券選擇合適的權重,如流動性、期限、風險權重。
接下來我們來看看如何設定利率期限結構的模型形式。
部分學者認為在不同的期限內,即期利率曲線形態不同,因此把整個利率期限結構分為幾段,每段的函數是不同的,此即為樣條(spline)法。根據函數形式的不同,利率期限結構的函數形態可分為多項式、指數等。綜合上面兩方面的考慮,期限結構的模型可以分為多項式樣條、指數樣條、B樣條、NS、NSS(NS的改進版)等。
對於採用多項式樣條和指數樣條的期限結構,遠端利率會隨著期限的增長呈迅速增長態勢,不太符合遠端利率相對平穩的實際情況,我認為不可取。我比較傾向於採用NS或NSS模型來描述中國的利率期限結構。當然,採用這兩種方法的時候,估計的過程需要用到非線性規劃,計算起來略嫌麻煩。

附:NS、NSS模型的具體形式

等號左邊為即期利率,右邊的 和 均為待估參數, 為待償期限。

4. 利率的風險結構與期限結構有什麼區別

一、利率的風險結構 ;

債權工具的到期期限相同,但利率卻不相同的現象稱為利率的風險結構。這種現象是由三個原因引起的,違約風險、流動性和所得稅因素。

債務人無法依約付息或歸還本金的風險稱為違約風險,它影響著債權工具的利率。各種債權工具都存在著違約風險,公司債券的利率往往高於同等條件下的政府債券的利率,普通公司債券的違約風險比信用等級較高的公司債券的違約風險要大。

影響債權工具利率的另一個重要因素是債券的流動性。流動性是指資產能夠以一個合理的價格順利變現的能力,它是一種投資的時間尺度之間的關系。各種債券工具由於交易費用、償還期限、是否可轉換等條件的不同,變現所需要的時間或成本也不同,流動性就不同

所得稅也是影響利率風險結構的重要因素。在同等條件下,具有免稅特徵的債券利率要低。

二、利率的期限結構

債券的期限和收益率在某一既定時間存在的關系就稱為利率的期限結構,表示這種關系的曲線通常稱為收益曲線。利率期限結構主要討論金融產品到期時的收益與到期期限這兩者之間的關系及變化趨勢。

在理論分析中,如果將影響收益的其他因素看成是既定的,那麼就可以用一條曲線來表示到期收益率與到期期限的函數關系。

一般而言,隨著利率水平的上升,長期收益與短期收益之差將減少或變成負值。也就是說,當平均利率水平較高時,收益曲線為水平的(有時甚至是向下傾斜的);當利率較低時,收益率曲線通常較陡。

5. 利率的風險結構與期限結構有什麼區別

一、利率的風險結構

債權工具的到期期限相同但利率卻不相同的現象稱為利率的風險結構。這種現象是由三個原因引起的:違約風險、流動性和所得稅因素。

債務人無法依約付息或歸還本金的風險稱為違約風險,它影響著債權工具的利率。各種債權工具都存在著違約風險,公司債券的利率往往高於同等條件下的政府債券的利率,普通公司債券的違約風險比信用等級較高的公司債券的違約風險要大。一般來說,債券違約風險越大,其利率越高。

影響債權工具利率的另一個重要因素是債券的流動性。流動性是指資產能夠以一個合理的價格順利變現的能力,它是一種投資的時間尺度(賣出它所需多長時間)和價格尺度(與公平市場價格相比的折扣)之間的關系。各種債券工具由於交易費用、償還期限、是否可轉換等條件的不同,變現所需要的時間或成本也不同,流動性就不同。一般來說,國債的流動性強於公司債券;期限較長的債券,流動性較差。流動性較差的債券,風險相對較大,利率定得就高一些;反之亦然。

所得稅也是影響利率風險結構的重要因素。在同等條件下,具有免稅特徵的債券利率要低。在美國,市政債券的違約風險高於國債,流動性低於國債,但由於市政債券的利息收入是免稅的,所以長期以來,美國市政債券的利率低於國債的利率。

二、利率的期限結構

債券的期限和收益率在某一既定時間存在的關系就稱為利率的期限結構,表示這種關系的曲線通常稱為收益曲線。利率期限結構主要討論金融產品到期時的收益與到期期限這兩者之間的關系及變化趨勢。在理論分析中,如果將影響收益的其他因素看成是既定的,那麼就可以用一條曲線來表示到期收益率與到期期限的函數關系。

一般而言,隨著利率水平的上升,長期收益與短期收益之差將減少或變成負值。也就是說,當平均利率水平較高時,收益曲線為水平的(有時甚至是向下傾斜的);當利率較低時,收益率曲線通常較陡。

收益曲線是指那些期限不同,卻有著相同流動性、稅率結構與信用風險的金融資產的利率曲線。金融資產收益曲線反映了這樣一種現象,即期限不同的有價證券,其利率變動具有相同特徵。

不同期限的債券,其利率經常朝同方向變動。利率水平較低時,收益率曲線經常呈現正斜率;利率水平較高時,收益率曲線經常出現負斜率。收益率曲線通常為正斜率。

收益曲線的表現形態有:

①正常的收益曲線(上升曲線),即常態曲線,指有價證券期限與利率呈正相關關系的曲線;

②顛倒的收益曲線(下降曲線),指有價證券期限與利率呈負相關關系的曲線。

6. 什麼叫債券的期限結構

就是債券的期限啊
短期長期

7. 債券收益率與期限的關系

1、債券的期限越長,市場利率變化對其價格的影響越大,債券的利率風險越大,債券的收益率越高。

2、其他情況不變,債券的期限越長,市場利率變化的不確定性越高,投資者要求的收益率越高。

3、其他情況不變,債券的收益率與債券的期限成正比關系,期限越長,收益率越高。

債券的到期收益率與到期期限之間的關系被稱為債券的利率期限結構。

(7)債券市場和期限結構擴展閱讀:

由於債券價格的波動性與其到期期限的長短相關,期限越長,市場利率變動時其價格波動幅度也越大,債券的利率風險也越大。因此,到期期限對債券收益率也將產生顯著影響,投資者一般會對長期債券要求更高的收益率。

利率的期限結構反映了不同期限的資金供求關系,揭示了市場利率的總體水平和變化方向,為投資者從事債券投資和政府有關部門加強債券管理提供可參考的依據。

8. 兩種債券只要期限相同, 不論其現金流入的期限結構如何,市場利率怎樣變化,價值總是一樣的嗎

不是的。債券的要素有很多,到期期限只是其中一種。首先,兩只債券的面值是否相同,其次,兩只債券的票面利率是否相同,然後,債券的付息方式是否相同,比如,是每年付息呢,還是半年付息,或者是到期一次性付息,都會影響債券價值。在以上要素都相同的情況之下,還要考慮債券的風險,即該債券的信用評級,評級低的債券價值較低。另外,在債券還有特殊條款的情況下,還要考慮特殊條款的影響,例如,該債券是不是可轉債?在債券未到期時,發行人是不是能夠提前贖回?在滿足一定條件下,債券持有人有沒有提前回售的權利?
總的來說,影響債券價值的因素很多,不能只看期限。

9. 什麼是期限結構理論

利率期限結構的估計是資產定價、金融產品設計、保值和風險管理的基準。國外關於利率期限結構理論的研究分為傳統的利率期限結構理論和現代的利率期限結構理論。傳統的利率期限結構理論主要集中於研究收益率曲線形狀及其形成原因;現代的利率期限結構理論著重研究利率的動態過程。傳統的利率期限結構理論包括三個理論:預期理論、流動性溢酬理論和市場分割理論。預期理論一般是指Hicks—Lutz理論,是利率期限結構理論中最主要的理論,它假定交易無稅收、無風險且交易者理性預期,認為任何證券的利率都同短期證券的預期利率有關,遠期利率反映出對未來的即期利率(spot rate)的預期。流動性溢酬理論(Liquidity Premiums Theory)認為預期理論忽視風險規避因素是不完善的。預期理論假定債券市場的債券間存在完全的可替換性,而流動性溢酬理論認為這種完全替換性是不存在的,因為不同利率之間的相互關系不僅與對未來利率的預期有關,還與風險規避因素有關。市場分割理論將整個市場分為不同期限的更小的子市場,認為投資者受到法律、偏好或者投資期限習慣的限制,只能進入子市場中的一個,從而不同期限子市場的利率水平由本身市場的供求雙方決定。西方債券市場的經驗數據研究證明,三種理論模型中,預期理論表達了對於未來即期利率的信息;偏好理論的流動性升水在期限一年以內的政府債券定價中明顯存在,而在一年期以上的債券中則不存在;市場分割理論的經驗證明相對較弱。在傳統的利率期限結構理論中,除市場分割理論以外,其他利率期限結構理論的前提條件都認為,資金在不同期限的金融市場之間是可以自由流動的。
現代的利率期限結構理論是指隨機期限結構(stochastic term structure)模型。隨機期限結構模型是刻畫利率與期限(或時間)之間的非確定性函數關系及其變化規律的有效工具。從一系列的假設條件入手,運用模型對金融市場利率歷史數據進行分析,探索利率水平變化所遵循的規律。常見的隨機期限結構和衍生證券定價模型,按其研究方法可分為計量經濟學的均衡模型(equilibrium models)和現代金融學的無套利模型(no—arbitrage models)兩大類。均衡模型是從假設一些經濟變數開始,推出短期無風險利率的一個過程,然後尋找該過程對債券價格和期權價格的含義。根據影響利率水平因素的數量,均衡模型又分為單因素模型和雙因素模型。無套利時變參數模型(Time-Dependent Parameter Models),有Heath,Jarrow和Morton(HJM)模型、Ho-Lee模型和Hull-White模型。無套利模型將初始期限結構看作為已知量,並定義期限結構是如何演變的,這個模型主觀色彩較濃;並且其模型參數的估計必須依賴市場利率的歷史數據。隨機期限結構模型中都包含維納過程,表示短期利率受到的隨機沖擊,即利率水平是以一種隨機遊走的方式反映來自市場的沖擊,不考慮不同期限利率產品間交易存在的摩擦。
因而,無論從傳統的利率期限結構理論還是從現代的利率期限結構理論進行分析,資金在整個金融市場上的自由流動是形成完善的利率結構的基礎條件。

10. 什麼是債務期限結構

債務期限結構是債務融資最重要的財務決策之一,是指不同的債務期限搭配從而影響債務融資治理效益,保證企業自身的財務安全的一種債務期限組合方式。不適當的債務期限搭配不僅會影響債務融資治理效益,危及企業自身的財務安全,還可能危及一國的安全。
現有的關於債務期限結構的研究大多是從公司微觀層面研究債務期限的選擇,而實際上企業在尋求最優債務期限結構時除了考慮自身特徵因素外,還要考慮所處國家的經濟等制度環境因素。因此,綜合研究企業債務期限結構的宏觀和微觀影響因素更有現實意義。
債務期限結構理論和經驗研究識別出許多影響債務期限結構選擇的因素。這些因素包括公司未來成長機會、自由現金流量、公司規模、現存資產的期限、公司質量、信息不對稱程度、實際所得稅稅率和波動性等。總的說來,解釋債務期限結構選擇的理論有契約成本假說、信號傳遞假說和稅收假說等。