当前位置:首页 » 证券市场 » 债券组合信用风险var度量
扩展阅读
股票投资经济学 2021-06-17 16:24:20

债券组合信用风险var度量

发布时间: 2021-06-14 05:22:49

❶ var模型一般在什么情况下使用呢

var模型一般在:市场有效性假设;市场波动是随机的,不存在自相关,情况之下使用。

利用数学模型定量分析社会经济现象,都必须遵循其假设条件,特别是对于我国金融业来说,由于市场尚需规范,政府干预行为较为严重,不能完全满足强有效性和市场波动的随机性,在利用VaR模型时,只能近似地正态处理。

VaR按字面的解释就是处于风险状态的价值,即在一定置信水平和一定持有期内,某一金融工具或其组合在未来资产价格波动下所面临的最大损失额。

(1)债券组合信用风险var度量扩展阅读:

VaR基本模型

根据Jorion(1996),VaR可定义为:

VaR=E(ω)-ω*①

式中E(ω)为资产组合的预期价值;ω为资产组合的期末价值;ω*为置信水平α下投资组合的最低期末价值。

又设ω=ω0(1+R)②

式中ω0为持有期初资产组合价值,R为设定持有期内(通常一年)资产组合的收益率。

ω*=ω0(1+R*)③

R*为资产组合在置信水平α下的最低收益率。

根据数学期望值的基本性质,将②、③式代入①式,有

VaR=E[ω0(1+R)]-ω0(1+R*)

=Eω0+Eω0(R)-ω0-ω0R*

=ω0+ω0E(R)-ω0-ω0R*

=ω0E(R)-ω0R*

=ω0[E(R)-R*]

∴VaR=ω0[E(R)-R*]④

上式公式中④即为该资产组合的VaR值,根据公式④,如果能求出置信水平α下的R*,即可求出该资产组合的VaR值。

❷ 投资组合中既有股票又有期权债券怎么计算VAR

你好这个是组合或者证券出现风险这个加权平均

❸ 债券组合能分散哪种风险

债券组合能分散的风险主要体现在信用风险上,当债券违约时,就意味着投资于该债券上的资金难以收回,甚至是无法收回。由于不同的债券在债券条款等各方面都有不同的,导致不同的信用评级,且债券发行者主体也有一定的信用评级。利率风险是属于系统风险里面,而信用利差(信用利差一般是指无风险债券与有风险债券之间的收益率差值)实际上也是基于信用风险让交易市场的投资者给出的一个类似系统风险的数值,若单一债券品种信用恶化,且债券组合集中持有该债券,这样会使得债券组合不能规避信用风险。

❹ 用什么方法确定投资组合风险度量

投资组合风险有:
投资组合的风险是用投资组合回报率的标准方差来度量,而且,增加投资组合中的证券个数可以降低投资组合的总体风险。但是,由于股票间实际存在的相关性,无论怎么增加个数都不能将投资组合的总体风险降到零。事实上,投资组合的证券个数越多,投资组合与市场的相关性就越大,投资组合风险中与市场有关的风险份额就越大。
这种与市场有关并作用于所有证券而无法通过多样化予以消除的风险称为系统风险或市场风险。而不能被市场解释的风险称为非系统风险或可消除风险。所以,无限制地增加成分证券个数将使投资组合的风险降到指数的市场风险。
风险控制的基本思想是,当一个投资组合的成分证券个数足够多时,其非系统风险趋于零,总体风险趋于系统风险,这时,投资组合的风险就可以用指数期货来对冲。
对冲的实际结果完全取决于投资组合和大市的相关程度。若投资组合与大市指数完全相关,投资组合的风险就能百分之百地被对冲,否则只能部分被抵消。
投资组合的系统风险是由投资组合对市场的相关系数乘以投资组合的标准差来表达,而这里的相关系数是投资组合与市场的协方差除以市场的标准差和投资组合的标准差

❺ 数理统计var怎么计算

用公式表示为:P(ΔPΔt≤VaR)=a

字母含义如下:

P——资产价值损失小于可能损失上限的概率,即英文的Probability。

ΔP——某一金融资产在一定持有期Δt的价值损失额。

VaR——给定置信水平a下的在险价值,即可能的损失上限。

a——给定的置信水平。

(5)债券组合信用风险var度量扩展阅读:

VaR的计算系数:

要确定一个金融机构或资产组合的VAR值或建立VAR的模型,必须首先确定以下三个系数:

一是持有期间的长短。持有期△t,即确定计算在哪一段时间内的持有资产的最大损失值,也就是明确风险管理者关心资产在一天内一周内还是一个月内的风险价值。

二是置信区间的大小。对置信区间的选择在一定程度上反映了金融机构对风险的不同偏好。

三是观察期间。观察期间是对给定持有期限的回报的波动性和关联性考察的整体时间长度,是整个数据选取的时间范围,有时又称数据窗口(Data Window)。例如选择对某资产组合在未来6个月,或是1年的观察期间内,考察其每周回报率的波动性(风险) 。

参考资料来源:网络——VAR方法

❻ 有关VAR风险价值的计算问题

风险价值法(VAR)

(一)概念
VAR实际上是要回答在概率给定情况下,银行投资组合价值在下一阶段最多可能损失多少。在风险管理的各种方法中,VAR方法最为引人瞩目。尤其是在过去的几年里,许多银行和法规制定者开始把这种方法当作全行业衡量风险的一种标准来看待。VAR之所以具有吸引力是因为它把银行的全部资产组合风险概括为一个简单的数字,并以美元计量单位来表示风险管理的核心——潜在亏损。

(二)特点
①可以用来简单明了表示市场风险的大小,单位是美元或其他货币,没有任何技术色彩,没有任何专业背景的投资者和管理者都可以通过VAR值对金融风险进行评判;
②可以事前计算风险,不像以往风险管理的方法都是在事后衡量风险大小;
③不仅能计算单个金融工具的风险。还能计算由多个金融工具组成的投资组合风险,这是传统金融风险管理所不能做到的。

(三)应用
①用于风险控制。目前已有超过1000家的银行、保险公司、投资基金、养老金基金及非金融公司采用VAR方法作为金融衍生工具风险管理的手段。利用VAR方法进行风险控制,可以使每个交易员或交易单位都能确切地明了他们在进行有多大风险的金融交易,并可以为每个交易员或交易单位设置VAR限额,以防止过度投机行为的出现。如果执行严格的VAR管理,一些金融交易的重大亏损也许就可以完全避免。
②用于业绩评估。在金融投资中,高收益总是伴随着高风险,交易员可能不惜冒巨大的风险去追逐巨额利润。公司出于稳健经营的需要,必须对交易员可能的过度投机行为进行限制。所以,有必要引入考虑风险因素的业绩评价指标。
但VAR方法也有其局限性。VAR方法衡量的主要是市场风险,如单纯依靠VAR方法,就会忽视其他种类的风险如信用风险。另外,从技术角度讲。VAR值表明的是一定置信度内的最大损失,但并不能绝对排除高于VAR值的损失发生的可能性。例如假设一天的99%置信度下的VAR=$1000万,仍会有1%的可能性会使损失超过1000万美元。这种情况一旦发生,给经营单位带来的后果就是灾难性的。所以在金融风险管理中,VAR方法并不能涵盖一切,仍需综合使用各种其他的定性、定量分析方法。亚洲金融危机还提醒风险管理者:风险价值法并不能预测到投资组合的确切损失程度,也无法捕捉到市场风险与信用风险间的相互关系。

VaR风险控制模型

(一)VaR模型基本思想编辑本段
VaR按字面的解释就是“处于风险状态的价值”,即在一定置信水平和一定持有期内,某一金融工具或其组合在未来资产价格波动下所面临的最大损失额。JP.Morgan定义为:VaR是在既定头寸被冲销(be neutraliged)或重估前可能发生的市场价值最大损失的估计值;而Jorion则把VaR定义为:“给定置信区间的一个持有期内的最坏的预期损失”。

(二)VaR基本模型
根据Jorion(1996),VaR可定义为:
VaR=E(ω)-ω* ①
式中E(ω)为资产组合的预期价值;ω为资产组合的期末价值;ω*为置信水平α下投资组合的最低期末价值。
又设ω=ω0(1+R) ②
式中ω0为持有期初资产组合价值,R为设定持有期内(通常一年)资产组合的收益率。
ω*=ω0(1+R*) ③
R*为资产组合在置信水平α下的最低收益率。
根据数学期望值的基本性质,将②、③式代入①式,有
VaR=E[ω0(1+R)]-ω0(1+R*)
=Eω0+Eω0(R)-ω0-ω0R*
=ω0+ω0E(R)-ω0-ω0R*
=ω0E(R)-ω0R*
=ω0[E(R)-R*]ω
∴VaR=ω0[E(R)-R*] ④
上式公式中④即为该资产组合的VaR值,根据公式④,如果能求出置信水平α下的R*,即可求出该资产组合的VaR值。

(三)VaR模型的假设条件
VaR模型通常假设如下:
⒈市场有效性假设;
⒉市场波动是随机的,不存在自相关。
一般来说,利用数学模型定量分析社会经济现象,都必须遵循其假设条件,特别是对于我国金融业来说,由于市场尚需规范,政府干预行为较为严重,不能完全满足强有效性和市场波动的随机性,在利用VaR模型时,只能近似地正态处理。

(四)VaR模型计算方法
从前面①、④两式可看出,计算VAR相当于计算E(ω)和ω*或者E(R)和R*的数值。从目前来看,主要采用三种方法计算VaR值。
⒈历史模拟法(historical simulation method)
⒉方差—协方差法
⒊蒙特卡罗模拟法(Monte Carlo simulation)

1、历史模拟法
“历史模拟法”是借助于计算过去一段时间内的资产组合风险收益的频度分布,通过找到历史上一段时间内的平均收益,以及在既定置信水平α下的最低收益率,计算资产组合的VaR值。
“历史模拟法”假定收益随时间独立同分布,以收益的历史数据样本的直方图作为对收益真实分布的估计,分布形式完全由数据决定,不会丢失和扭曲信息,然后用历史数据样本直方图的P—分位数据作为对收益分布的P—分位数—波动的估计。
一般地,在频度分布图中横轴衡量某机构某日收入的大小,纵轴衡量一年内出现相应收入组的天数,以此反映该机构过去一年内资产组合收益的频度分布。
首先,计算平均每日收入E(ω)
其次,确定ω*的大小,相当于图中左端每日收入为负数的区间内,给定置信水平 α,寻找和确定相应最低的每日收益值。
设置信水平为α,由于观测日为T,则意味差在图的左端让出
t=T×α,即可得到α概率水平下的最低值ω*。由此可得:
VaR=E(ω)-ω*

2、方差—协方差法
“方差—协方差”法同样是运用历史资料,计算资产组合的VaR值。其基本思路为:
首先,利用历史数据计算资产组合的收益的方差、标准差、协方差;
其次,假定资产组合收益是正态分布,可求出在一定置信水平下,反映了分布偏离均值程度的临界值;
第三,建立与风险损失的联系,推导VaR值。
设某一资产组合在单位时间内的均值为μ,数准差为σ,R*~μ(μ、σ),又设α为置信水平α下的临界值,根据正态分布的性质,在α概率水平下,可能发生的偏离均值的最大距离为μ-ασ,
即R*=μ-ασ。
∵E(R)=μ
根据VaR=ω0[E(R)-R*] 有
VaR=ω0[μ-(μ-ασ)]=ω0ασ
假设持有期为 △t,则均值和数准差分别为μ△t和 ,这时上式则变为:
VaR=ω0•α•
因此,我们只要能计算出某种组合的数准差σ,则可求出其VaR的值,一般情况下,某种组合的数准差σ可通过如下公式来计算
其中,n为资产组合的金融工具种类,Pi为第i种金融工具的市场价值,σi第i种金融工具的数准差,σij为金融工具i、j的相关系数。
除了历史模拟法和方差—数准差法外,对于计算资产组合的VaR的方法还有更为复杂的“蒙特卡罗模拟法”。它是基于历史数据和既定分布假定的参数特征,借助随机产生的方法模拟出大量的资产组合收益的数值,再计算VaR值。

风险估价技术比较
⒈确认头寸 找到受市场风险影响的各种金融工具的全部头寸
⒉确认风险因素 确认影响资产组合中金融工具的各种风险因素
⒊获得持有期内风险因素的收益分布 计算过去年份里的历史上的频度分布 计算过去年份里风险因素的标准差和相关系数 假定特定的参数分布或从历史资料中按自助法随机产生
⒋将风险因素的收益与金融工具头寸相联系 将头寸的盯住市场价值(mark to market value)表示为风险因素的函数 按照风险因素分解头寸(risk mapping) 将头寸的盯住市场价值(mark to market value)表示为风险因素的函数
⒌计算资产组合的可变性 利用从步骤3和步骤4得到的结果模拟资产组合收益的频度分布 假定风险因素是呈正态分布,计算资产组合的标准差 利用从步骤3和步骤4得到的结果模拟资产组合收益的频度分布
⒍给定置信区间推导VAR

VaR模型在金融风险管理中的应用
VaR模型在金融风险管理中的应用越来越广泛,特别是随着VaR模型的不断改进,不但应用于金融机构的市场风险、使用风险的定量研究,而且VaR模型正与线性规划模型(LPM)和非线性规划模型(ULPM)等规划模型论,有机地结合起来,确定金融机构市场风险等的最佳定量分析法,以利于金融机构对于潜在风险控制进行最优决策。
对于VaR在国外的应用,正如文中引言指出,巴塞尔委员会要求有条件的银行将VaR值结合银行内部模型,计算适应市场风险要求的资本数额;G20建议用VaR来衡量衍生工具的市场风险,并且认为是市场风险测量和控制的最佳方法;SEC也要求美国公司采用VaR模型作为三种可行的披露其衍生交易活动信息的方法之一。这表明不但金融机构内部越来越多地采用VaR作为评判金融机构本身的金融风险,同时,越来越多的督管机构也用VaR方法作为评判金融机构风险大小的方法。
我国对VaR模型的引介始于近年,具有较多的研究成果,但VaR模型的应用现在确处于起步阶段,各金融机构已经充分认识到VaR的优点,正在研究适合于自身经营特点的VaR模型。
本部分就VAR模型在金融机构风险管理中的应用及其注意的问题介绍如下:

例1 来自JP.Morgan的例子
根据JP.Morgan1994年年报披露,该公司1994年一天的95%VAR值平均为1500万美元,这一结果可从反映JP.Morgan1994年日收益分布状况图中求出.该公司日均收益为500万美元,即E(ω)=500万美元。
如果给定α=95%,只需找一个ω*,使日收益率低于ω*的概率为5%,或者使日收益率低于ω*的ω出现的天数为254×5%=13天,从图中可以看出,ω*=-1000万美元。
根据VAR=E(ω)-ω*=500-(-1000)=1500万美元
值得注意的是,这只是过去一段时间的数值,依据过去推测未来的准确性取决于决定历史结果的各种因素、条件和形势等,以及这些因素是否具有同质性,否则,就要做出相应的调查,或者对历史数据进行修正。这在我国由于金融机构非完全市场作用得到的数据更应该引起重视。

例2 来自长城证券杜海涛的研究
长城证券公司杜海涛在《VaR模型在证券风险管理中的应用》一文中,用VaR模型研究了市场指数的风险度量、单个证券的风险度量和证券投资基金净值的VaR等,研究表明,VaR模型对我国证券市场上的风险管理有较好的效果。
下面就作者关于市场指数的风险度量过程作一引用,旨在说明VaR的计算过程(本文引用时有删节)。
第一步 正态性检验
首先根据2000年1月4日至2000年6月2日期间共94个交易日的日收益率做分布直方图,由于深沪两市场具有高度相关性,此处仅以上证综合指数为例计算。可以看出上证综合指数日收益率分布表现出较强的正态特征:众数附近十分集中,尾部细小。分析表明,深市指数也有相同的特征。
下面利用数理统计的方法对2000年4月3日至6月2日期间上述3种指数的日收益率的分布情况进行正态性检验,检验结果如下:
W(深证综指)=0.972445
W(深证成指)=0.978764
W(上证综指)=0.970279
W为正态假设检验统计量,当样本容量为40时取α =0.05(表示我们犯错误的概率仅为 α=0.05),此时W0.05 =0.94,只有当W 时我们拒绝原假设。从我们的检验结果来看,我们无法拒绝三种指数的日收益率服从正态分布的假设。
有关这三种指数日收益率的相关统计量见表1。
表1 三种指数日收益率统计量
深圳综合 深圳成分 上证综合
均 值( )
0.001318 0.001061 0.001561
标准差( )
0.013363 0.012582 0.012391

通过上面的分析,我们可以得出三种指数的日收益率基本上服从N(μ,σ),由于三种指数的平均日收益率非常接近零值,故可近似为N(0,σ)。
第二步 VaR的计算
由于正态分布的特点,集中在均值附近左右各1.65σ区间范围内的概率为0.90,用公式表示为:P(μ-1.65σ,再根据正态分布的对称性可知P(X<μ-1.65σ )=P(X>μ+1.65σ)=0.05;则有P(X>μ-1.65σ)=0.95。根据上面的计算结果可知在95%的置信度情况下:
VaR值=T日的收盘价×1.65σ。
取2000年4月3日至2000年6月2日的数据,然后根据上面的公式可以计算出深证综指、深证成指、上证综指3种指数在2000年6月2日的VaR值分别为:
深证综合指数VaR=591.34×1.65×0.013363=13.04
深证成份指数VaR=4728.88×1.65×0.012582=98.17
上证综合指数VaR=1916.25×1.65×0.012391=39.17
其现实意义为:根据该模型可以有95%的把握判断指数在下一交易日即6月5日的收盘价不会低于T日收盘价-当日的VaR值;
即深证综合指数不会低于:591.34-13.04=578.30
深证成份指数不会低于:4728.88-98.17=4630.71
上证综合指数不会低于:1916.25-39.17=1877.08。
第三步 可靠性检验
现在来检验该模型的可靠性。根据3种指数的VaR来预测下一个交易日的指数变动下限,并比较该下限和实际收盘价,看预测的结果与我们期望值之间的差别。图2、图3、图4是3个指数于2000年4月3日至6月2日的实际走势与利用VaR预期下限的拟合图形。

现将样本区间内实际收盘指数低于预测下限的天数与95%置信度情况下的可能出现的期望天数作一统计对比,结果见表2。
表2 模型期望结果与实际结果的比较

深圳综合 深圳成分 上证综合
实际情况 3 3 3
期望情况 2 2 2

通过上面的计算我们可以发现应用VaR模型进行指数风险控制拟合结果较好。至于三种指数均有3个交易日超过预测下限,这主要是由于考察期间适逢台湾政权更迭及美众院审议表决予华PNTR的议案,市场波动较大所致。

例3 来自银行家信托公司的例子
由于金融机构特别是在证券投资中,高收益常伴随着高风险,下级部门或者交易员可能冒巨大风险追求利润,但金融机构出于稳健经营的需要,有必要对下级部门或者交易员可能的过渡投资机行为进行限制,因而引入考虑风险因素的业绩评价体系,美国银行和信托公司将VaR模型用于业绩评估中,确立了业绩评价指数——经风险调查的资本收益,即RAROC= ,从公式可看出,即使收益再高,但由于VaR也高,则RAROC也不会很高,其业绩评价也不可能很高。因此,将金融机构将VaR应用于业绩评价中,可对过度投机行为进行限制,使金融机构能更好地选择在最小风险下获取较大收益的项目。
同时,杜海涛也将VaR方法用于对我国5只基金管理人的经营业绩评价,评价结果如下表:
我国5只基金管理人的RAROC比较表
基金开元 基金普惠 基金金泰 基金安信 基金裕阳
VaR值 0.1178 0.0919 0.0880 0.1240 0.1185
收益率 0.4153 0.2982 0.3592 0.4206 0.3309
RAROC 2.8467 2.7495 3.5188 3.1707 2.7938
日收益率的标准差 0.045623 0.03748 0.035623 0.037033 0.036559
数据来源:杜海涛《VaR模型在证券风险管理中的应用》

随着我国加入WTO,金融全球化挑战我国的金融改革及创新,特别是金融理论的创新和控制风险技术的创新,如何将金融风险控制到最小程度,真正使金融体系成为支撑社会经济的基础,达到为社会分散经济风险的目的,是我国金融界必须面对的艰巨任务,如何用定量方法测度和控制金融风险,是金融机构和监管当局必须面对的问题。从金融机构本身来看,将风险定量分析方法,比如VaR模型应用于日常的风险管理,将市场风险和信用风险降到最低的程度,以期获取最大的利润回报,是金融机构的义不容辞的事情,也是其当务之急。从监管当局来看,促使金融机构应用先进的控制风险技术,使金融家们能够随心所欲地剥离各种风险,即对各种复杂的风险进行精确的计算和配置,将有利于我国的监管水平有较大的提高。因此,我国的金融机构和金融监管当局非常有必要将VaR模型等风险控制技术引入我国金融风险管理将非常必要,且具有一定的现实意义。

❼ 一名债券基金经理,将要配置债券投资组合,将考虑哪些风险

债券基金经理在配置债券时会综合各方面因素,和个人习惯来配置债券,面临的风险主要是利率风险,流动性风险,信用风险,久期风险,总之基金经理在配置债券时,最好综合各方面债券,不要押宝某类债券或者某只债券,也不要一味的拉长债券久期,这样一旦遇到集中赎回就会被动,一个优秀的基金经理会使自己管理的债券基金均衡配置,不会大起大落,以上只是个人意见仅供参考,投资有风险需谨慎,祝你投资顺利天天开心

❽ Creditmetrics模型的基本思想

1、信用风险取决于债务人的信用状况,而企业的信用状况由被评定的信用等示。因此,信用计量模型认为信用风险可以说直接源自企业信用等级的变化,并假定信用评级体系是有效的,即企业投资失败、利润下降、融资渠道枯竭等信用事件对其还款履约能力的影响都能及时恰当地通过其信用等级的变化而表现出来。信用计量模型的基本方法就是信用等级变化分析。转换矩阵(Transition Matrix一般由信用评级公司提供),即所有不同信用等级的信用工具在一定期限内变化(转换)到其他信用等级或维持原级别的概率矩阵,成为该模型重要的输入数据。
2、信用工具(包括债券和贷款等)的市场价值取决于债务发行企业的信用等级,即不同信用等级的信用工具有不同的市场价值,因此,信用等级的变化会带来信用工具价值的相应变化。根据转换矩阵所提供的信用工具信用等级变化的概率分布,同时根据不同信用等级下给定的贴现率就可以计算出该信用工具在各信用等级上的市场价值(价格),从而得到该信用工具市场价值在不同信用风险状态下的概率分布。这样就达到了用传统的期望和标准差来衡量资产信用风险的目的,也可以在确定的置信水平上找到该信用资产的信用值,从而将Var的方法引入到信用风险管理中来。
3、信用计量模型的一个基本特点就是从资产组合而并不是单一资产的角度来看待信用风险。根据马柯威茨资产组合管理理论,多样化的组合投资具有降低非系统性风险的作用,信用风险很大程度上是一种非系统性风险,因此,在很大程度上能被多样性的组合投资所降低。另一方面,由于经济体系中共同的因素(系统性因素)的作用,不同信用工具的信用状况之间存在相互联系,由此而产生的系统性风险是不能被分散掉的。这种相互联系由其市场价值变化的相关系数(这种相关系数矩阵一般也由信用评级公司提供)表示。由单一的信用工具市场价值的概率分布推导出整个投资组合的市场价值的概率分布可以采取马柯威茨资产组合管理分析法。
4、由于信用计量模型将单一的信用工具放入资产组合中衡量其对整个组合风险状况的作用,而不是孤立地衡量某一信用工具自身的风险,因而,该模型使用了信用工具边际风险贡献这样的概念来反映单一信用工具对整个组合风险状况的作用。边际风险贡献是指在组合中因增加某一信用工具的一定持有量而增加的整个组合的风险(以组合的标准差表示)。通过对比组合中各信用工具的边际风险贡献,进而分析每种信用工具的信用等级、与其他资产的相关系数以及其风险暴露程度等各方面因素,可以很清楚地看出各种信用工具在整个组合的信用风险中的作用,最终为投资者的信贷决策提供科学的量化依据。

❾ var与cvar在度量风险中有何区别

VAR(Value at Risk)按字面解释就是“在险价值”,其含义指:在市场正常波动下,某一金融资产或证券组合的最大可能损失。更为确切的是指,在一定概率水平(置信度)下,某一金融资产或证券组合价值在未来特定时期内的最大可能损失。

VaR的特点

VaR特点主要有:
第一,可以用来简单明了表示市场风险的大小,没有任何技术色彩,没有任何专业背景的投资者和管理者都可以通过VaR值对金融风险进行评判;
第二,可以事前计算风险,不像以往风险管理的方法都是在事后衡量风险大小;
第三,不仅能计算单个金融工具的风险。还能计算由多个金融工具组成的投资组合风险,这是传统金融风险管理所不能做到的。

❿ 信用风险度量模型的对现代信用风险度量模型的分析评价

该模型的优点是:KMV模型是一个动态模型,将借款公司的股价信息转换成信用信息,对借款公司质量的变化比较敏感,同时市场信息也被反映在模型当中,具有一定的前瞻性,模型的预测能力较强。
KMV模型在实际运用中存在的不足是:一是着重于违约预测,忽视了企业信用等级的变化,只适于评估与企业资产价值直接联系的信贷资产(基本上只是贷款)的风险;二是该模型适用于上市公司的信用风险评估,由于我国的股市并不是一个有效的市场,上市公司的股票价格常常背离公司的实际价值,企业资产价值特别是国有企业的资产价值并不能够完全反映到股票市值中,从而影响了模型预测的精确性。但是,该模型可以运用到对跨国集团信贷资产的风险管理上,跨国企业的信贷资产很大部分以其母公司为担保人,而其母公司所在国家的股票市场是比较成熟有效的;三是模型基于资产价值服从正态分布的假设和实际不相符,模型不能够对长期债务的不同类型进行分辨。 该模型具有两个优点:一是该模型属于MTM(market to market)模型,并据此计算信用风险的VaR值,这与国有商业银行的经营理念基本吻合;二是该模型首次将组合管理理念引入信用风险管理领域,适用于商业信用、债券、贷款、贷款承诺、信用证、以及市场工具(互换、远期等)等信贷资产组合的风险计量。
该模型的局限在于:
一是该模型对信用风险的评判很大程度上依赖于借款人的信用等级的变化,在我国现有的信用环境下,出现大量损失的概率可能较高。
二是模型假设信用等级转移概率是一个稳定的马尔可夫过程,而实际中信用等级转移与过去的转移结果之间有很高的相关性。
三是该模型假设无风险利率是事先决定的,我国债券市场尚不发达,还没有形成合理的基础利率,而基础利率是计算贷款现值的重要因素。
四是在我国目前还没有比较客观、权威的信用评级公司,没有现成的企业信用等级转换概率和不同信用等级企业违约回收率数据资料。在商业银行历史贷款资料库中,某一信用级别的企业在不同时期转换成另一信用级别的概率可能是不相同的,某一信用级别的企业在各个时期违约回收率的均值可能也是不同的。这些不同时期的转换概率和企业违约回收率均值就构成了混沌时间序列。如果假设经济的宏观因素没有大的波动,就可以利用构成的混沌时间序列来预测短期未来的信用等级转换概率矩阵和企业违约回收率均值。有了这些数据,国有商业银行就可以应用信用度量术模型量化和管理信用风险。
五是该模型在实际运用中需要能够做好信用等级评估工作的高素质的工作人员,另外由于该模型采用了蒙特卡罗模拟,运算量较大,以国有商业银行现有的电脑网络系统,每次计算VAR值都需要几个小时甚至十几个小时,这样的速度有时可能无法满足业务发展的需要。 该模型的主要优势:比较容易利用死亡率表来计算单个债券和债券组合的预期损失及其波动率,特别是计算债券组合很方便;死亡模型是从大量样本中统计出来的一个模型,所以采用的参数比较少。该模型主要劣势:没有考虑不同债券的相关性对计算结果的影响;没有考虑宏观经济环境对死亡率的影响,因而需要时时更新死亡率表;数据更新和计算量很大;不能处理非线性产品,如期权、外币掉期
信用度量模型的意义
信用度量模型作为新巴塞尔协议框架,其意义在于确定银打所承担的风险水平;对贷款等各种金融产品进行合理定价;合理配置银行资本,抵御各种风险。
下面以基于VaR的风险度最模型为例来说明在新巴塞尔议框架下风险度量模型的积极意义。
2001年, 巴塞尔委员会发布了旨在替代旧版巴塞尔协议的《新巴塞尔资本协议》(以下简称新巴塞尔协议) 。在此框架下,商业银行面临的风险被分为三类:信用风险、市场风险和操作风险。
VaR被运用于商业银行风险管理始于对于市场风险的监管。传统的市场风险管理技术可以分为灵敏性分析和波动性分析两类,但这两种方法在精确度、依赖性和全面性等方面存在明显的缺陷,而正如Jorion指出的那样,VaR方法他用规范的统计技术,全面地衡量市场风险,很好地弥补了灵敏性分析和波动性分析的缺陷,将市场风险管理技术提升到了一个新的高度 巴塞尔委员会也明确了用VaR 方法结合内部模型法来度量银行面临的市场风险的规定。
信用风险是商业银行面临的风险中最重要的一类风险,由于信用风险本身的一些特点, 运用VaR对其进行度量存在技术上的困难。但是随着数量技术的发展,新一代金融工程学家运用新的建模技术和分析方法建立了一些暴于VaR技术的信用风险度量模型。其中比较著名的有CIBC提出的CreditVaR 系列方法和J.P.Mrgan提出的CreditMetrics。
在商业银行皿临的风险中,操作风险一直以来缺乏明确定义和足够关注,在新巴塞尔协议中一项重要的修改,就是将操作风险纳入风险资本的计算和监管框架。新巴塞尔协议中提供了多种可供选择的计算操作风险资本盒的方法,其中比较复杂的损失分布法就需要运用VaR方法来确定操作风险资本。