1. 量化交易主要有哪些好的策略
研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库mysql,asp网络编程语言,以及可以设置成网络服务器的旗舰版win7操作系统。
2. 量化交易主要有哪些经典的策略
研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。
3. 如何创建自己的量化交易策略组合
1、你首先要有策略,且要有一定数量的策略,思路不一样,不是指品种和时间周期不一样;
2、这些策略的组合有减少交易风险的功效,有组合在一起的对冲机制,这样才有组合的必要;
3、有极端行情风险的综合预判能力,减少自动运营下因黑天鹅而导致巨亏的情况。
具备以上三个条件,再考虑你问的问题。如果不具备,先让自己具备这个条件
4. 量化交易主要有什么经典的策略
您好
研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。
5. 某券商自营部量化策略岗的面试题
某券商自营部量化策略岗的面试题
本文为网络上流传的某券商自营部量化策略岗的面试题,内容不太完整,仅供参考。
笔试一共八条大题,前两题必答,后六题选三题作答。(试卷还是打印得很工整的,感觉比大学考试更正式。)
第一题,给出了一个资产组合,A、B两证券的权重、波动率、相关系数、贝塔值。
(1)求资产组合的贝塔值
(2)求资产组合的波动率
(3)简述CAPM模型的缺陷。
第二题,自己挑一种程序语言
(1)编写出求两正整数M,N之间的最大公因数的程序。
(2)忘了。
第三题,期权组合题,假设标的资产近期将会出现大波动,市场有一个CALL和一个PUT可供选择,请构建出一个你觉得适合后市的期权套利组合,并画出对应的盈亏图
私募工场是目前国内最具凝聚力的投顾培养平台,坚持以资产配置为核心投资理念,开展覆盖量化投资及对冲基金领域的权威培训、FOF/MOM业务,目前已吸引上万家优秀私募及数百家金融孵化机构入驻。
私募工场长期推出“阿基米德”:投顾入驻计划/“阿基米德”:资方入驻计划/“阿基米德”:壳资源交换/Quant求职/私募求才业务,敬请搜索公众号:私募工场或者直接联系微信150****1448
第四题,假设标的遵循几何布朗运动(就是那个随机微分方程),利用伊藤引理求解上述SDE。
第五题,给出每期的现金流和即期利率,求出债券价格和久期。
第六题,假设有1024只硬币,其中有一只是假的(正反两面同样图案)。后面忘了,给出效用函数,问你愿意??????(忘记了)
第七题,支持向量机SVM的原理。
第八题,结合当前宏观经济阐述下半年我国宏观经济走向以及资产配置建议。
楼主小硕,学校非985,目前在某一线券商实**,做量化方面的事情,不过很水。
6. 券商研究报告有一类“量化投资组合策略”的研究报告
你需要理解几个概念:
1,量化投资:即用一定的策略去表达对投资品种的预期。用各种表达方式来制定各种投资模型,然后按照模型严格执行。
2,投资模型(投资策略模型):根据历史总结出来的投资模型,会进行不同测试以证明可行性,如历史数据测试,数据冲击测试,滑点测试,实盘测试等等,一般能推出的产品都经过考验。
3,组合:根据模型得出的结果,不同的股票,其所在宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等各方面都不一样,简单说,其涨跌预期不一样,所以其权重也会不一样。各种的股票凑成一个买卖要素,叫买卖组合
简单总结一下,券商根据各种数据总结(即量化)出一套买卖策略(即投资策略组合),这个组合经过测试,得出几个股票,而且股票重要性不同(权重不同)。因为是经过测试(通过考验),可信度较高,希望客户(潜在客户)根据他们的数据进行买卖,特别是对于没有任何买卖知识的投资者,盈利的可能性较高。
至于自营还是做产品这就无法得知了,因为不知道券商是否有更好的投资策略。
7. 量化交易都有哪些主要的策略模型有什么好的平台
1. 收集者整理一些常见的技术指标,比方MA,MAD,KDJ,RSI,等,以及一些不常见或自定义的技术指标几十种,大概50-80种。
2. 收集常用的交易模式大概几十种,包括网格,突破,斐波那契,波浪,等等。
3. 在一定的初始化条件下,利用上面这些素材进行自由组合,生产处海量的交易系统
4. 利用计算机的大规模计算能力,用历史数据对上述的交易系统进行回测,根据回测结果优选出若干个盈利能力和资金回撤较小的交易系统。
5. 对优选出的交易系统进一步优化。注意,是对交易模型进行优化,并不是对参数进行过度优化。
6. 扩大测试数据的范围,比方,由原先的2-3年数据回测扩大到15年数据回测。
7. 最终产生出若干个表现出色的交易系统。这几个交易系统之间最好有一定的对立关系,而不是连锁关系,就是说,当用于同一个证券品种交易时,最好同时开启几个交易系统,形成互锁关系,降低风险,减少资金回撤比例。
至于好的平台,建议使用大虎鲸智投或者小蚜虫股票等。
8. 量化投资有哪些策略
这串真的香啊,来一把?57
9. 量化选股策略是什么多因子模型是什么
量化选股就是利用数量化的方法选择股票组合,期望该股票组合能够获得超越基准收益率的投资行为,研究表明,板块、行业轮动在机构投资者的交易中最为获利的盈利模式是基于行业层面进行周期性和防御性的轮动配置,这也是机构投资者最普遍采用的策略。此外,周期性股票在扩张性货币政策时期表现较好,而在紧缩环境下则支持非周期性行业。行业收益差在扩张性政策和紧缩性政策下具有显著的差异。
多因子模型是应用最广泛的一种选股模型,基本原理是采用一系列的因子作为选股标准,满足这些因子的股票则被买入,不满足的则卖出。多因子模型相对来说比较稳定,因为在不同市场条件下,总有一些因子会发挥作用。
10. 什么是量化投资交易策略
一文看懂量化投资策略
闲话基
量化投资在近些年受到越来越多的关注,包括规模、策略、业绩。量化投资,是指通过借助统计学、数学方法,运用计算机从海量历史数据中,寻找能够带来超额收益的多种“大概率”策略,按照策略构建的数量模型严格执行投资,力求获得长期稳定可持续高于平均的超额回报。
跨市场策略涉及外汇兑换、国际期货交易对冲,交易实现难度大,国内用得少。
由于期货具有杠杆属性,这类策略持仓的市值往往很大,有时候甚至超过产品资产总值,导致收益率的波动率是所有量化策略中最大的。在市场出现连续震荡行情时,这样策略由于杠杆属性会出现较大的回撤。另外一个对这类策略的一个限制是,目前市场上活跃交易的期货品种不多,高频交易很大程度倚重于品种成交量,开平仓时间间隔较短,使得策略容量不大。