❶ 债券收益率、久期不变,票面利率越大,凸性越大。 是么为什么
尽管该结论得到普遍应用,但经过计算,必须说这个结论是错的。
首先对于n期零息债来说,无论票面利率是多少,它的久期都是n, 在债券收益率r 不变的情况下,它的凸性也不变,即凸性等于n(n+1)/(1+r)^2。也就是说,对零息债而言,只要期限确定(久期不变),它的凸性也不变。
对于附息债券,这个结论的前提是错的,因为附息债券的久期大小受票面利率、市场利率(收益率)和期限的影响,只要票面利率变化,久期也变,在市场利率和期限一定的情况下,票面利率与久期负相关,票面利率越大,久期越小。不存在票面利率变大而久期不变的附息债。
❷ 如何理解可售回债券的凸性特征
不止可回售债券啊,绝大多数债券都是呈现正凸性的。(分母上可以乘上2,如果分母不乘2,则要在凸性效应的分母上乘以2)(分母上可以乘上2,如果分母不乘2,则要在凸性效应的分母上乘以2)
从公式上可以看出来,只要涨得快、跌得慢,或者正向价格波动比负向价格波动快,那么凸性就是正的。
可回售债券的凸性可以从两个角度来理解。
1、债券凸性是一种对投资者有利的特性,所以当债券对于投资者有利的时候,会呈现出凸性,即涨得快、跌得慢。对于可售回债券(putable bond),由于嵌入了对投资者有利的期权,所以会呈现出比option-free bond更加大的正凸性。
2、当债券价格低于一定程度的时候,投资者会行使售回权力,所以债券价格理论上不会低于约定的回售价格,只会越来越趋近于回售价格,所以在高利率情况下的曲线会比option-free的债券上移,呈现出更大的凸性。
❸ 如何利用久期和凸性 衡量债券的利率风险
久期和凸性是衡量债券利率风险的重要指标。很多人把久期简单地视为债券的到期期限,其实是对久期的一种片面的理解,而对凸性的概念更是模糊。在债券市场投资行为不断规范,利率风险逐渐显现的今天,如何用久期和凸性量化债券的利率风险成为业内日益关心的问题。
久期
久期(也称持续期)是1938年由
F.R.Macaulay提出的,用来衡量债券的到期时间。它是以未来收益的现值为权数计算的到期时间。其公式为
其中,P=债券现值,Ct=每年支付的利息,y=到期收益率,n=到期期数,M=到期支付的面值。
可见久期是一个时间概念,是到期收益率的减函数,到期收益率越高,久期越小,债券的利率风险越小。久期较准确地表达了债券的到期时间,但无法说明当利率发生变动时,债券价格的变动程度,因此引入了修正久期的概念。
修正久期
修正久期是用来衡量债券价格对利率变化的敏感程度的指标。由于债券的现值
对P求导并加以变形,得到:
我们将
的绝对值称作修正久期,它表示市场利率的变化引起的债券价格变动的幅度。这样,不同现值的券种就可以用修正久期这个指标进行比较。
由公式1和公式2我们可以得到:
在某一特定到期收益率下,P为常数,我们记作P0,即得到:
由于P0是理论现值,为常数,因此,债券价格曲线P与P
/P 0有相同的形状。由公式7,在某一特定到期收益率下,P /P
0的斜率为修正久期,而债券价格曲线P的斜率为P0×(修正久期)。
修正久期度量了收益率与债券价格的近似线性关系,即到期收益率变化时债券价格的稳定性。修正久期越大,斜率的得绝对值越大,P对y的变动越敏感,y上升时引起的债券价格下降幅度越大,y下降时引起的债券价格上升幅度也越大。可见,同等要素条件下,修正久期小的债券较修正久期大的债券抗利率上升风险能力强,但抗利率下降风险能力较弱。
但修正久期度量的是一种近似线性关系,这种近似线性关系使由修正久期计算得出的债券价格变动幅度存在误差。如下图,对于债券B′,当收益率分别从y上升到y1或下降到y2,由修正久期计算出来的债券价格变动分别存在P1′P1"和P2′P2"的误差。误差的大小取决于曲线的凸性。
市场利率变化时,修正久期稳定性如何?比如上图中,B′和B"的修正久期相同,是否具有同等利率风险呢?显然不同。当y变大时,B"价格减少的幅度要小,而当y变小时,B"价格变大的幅度要大。显然,B"的利率风险要小于
B′。因此修正久期用来度量债券的利率风险仍然存在一定误差,尤其当到期收益率变化较大时。凸性可以更准确地度量该风险。
凸性
利用久期衡量债券的利率风险具有一定的误差,债券价格随利率变化的波动性越大,这种误差越大。凸性可以衡量这种误差。
凸性是对债券价格曲线弯曲程度的一种度量。凸性越大,债券价格曲线弯曲程度越大,用修正久期度量债券的利率风险所产生的误差越大。严格地定义,凸性是指在某一到期收益率下,到期收益率发生变动而引起的价格变动幅度的变动程度。
根据其定义,凸性值的公式为:
凸性值
=
凸性值是价格变动幅度对收益率的二阶导数。假设P0是理论现值,则凸性值=
应用
由于修正久期度量的是债券价格和到期收益率的近似线性关系,由此计算得出的债券价格变动幅度存在误差,而凸性值对这种误差进行了调整。
根据泰勒系列式,我们可以得到
的近似值:
这就是利用修正久期和凸性值量化债券利率风险的计算方法。我们可以看到,当y上升时, 为负数,若凸性值越大,则
的绝对值越小;当y下降时,为正数,若凸性值越大,则越大。
因此,凸性值越大,债券利率风险越小,对债券持有者越有利;而修正久期具有双面性,具有较小修正久期的债券抗利率上升风险较强,而当利率下降时,其价格增幅却小于具有较大修正久期债券的价格增幅。
以国债21国债(15)和03国债(11)为例,两券均为7年期固息债,每年付息一次(附表为今年3月1日的有关指标)。
相比之下,21国债(15)具有较小的修正久期和较小的凸性值。如果收益率都上升50个基点,其价格变动幅度分别为:
21国债(15):
03国债(11):
可见经过对久期和凸性的简单计算,可以比较直观地衡量债券的利率风险。如果收益率变动幅度不大,则一般修正久期即可以作为度量利率风险的近似指标。
❹ 关于债券凸性问题,求高手指教。最好详细一些
凸性大的会涨得多一些。凸性是对债券价格利率敏感性的二阶估计,是对债券久期利率敏感性的测量。实际上凸性是债券价格在交易时有一定的波动才出现的,没有价格波动的债券是没有凸性的,最主要原因是债券价格没有波动就不能体现其对利率敏感性,故此就没有凸性。而凸性大的说明其价格波动较多。由于题目设定条件是两个债券收益率和久期相同的情况下,那么凸性大的就会涨多一些。
❺ 请问普通附息债券的凸性是大于小于还是等于0为什么
C/(1+r)的X次方 的二阶导数大于0,所以是大于0的
望采纳
❻ 为什么票面利率越大,凸性越大
凸性的性质是凸性随久期的增加而增加。若收益率、久期(即持续期)不变,票面利率越大,凸性越大。利率下降时,凸性增加。
就是说债券的市场收益率和债券的剩余期限一定,债券票面利率越低那么久期就越大(这是根据久期的性质),故此凸性越大。
凸性的相加项为t*(t+1)*vt,vt为t时间点的现金流,票面利率越大,t*(t+1)*vt越大。
❼ 如何用数学方法证明债券的久期和凸性
什么是凸性
久期本身也会随着利率的变化而变化。所以它不能完全描述债券价格对利率变动的敏感性,1984年Stanley Diller引进凸性的概念。
久期描述了价格-收益率曲线的斜率,凸性描述了曲线的弯曲程度。凸性是债券价格对收益率的二阶导数。
[编辑]凸性的计算
由债券定价定理1与4可知,债券价格-收益率曲线是一条从左上向右下倾斜,并且下凸的曲线。下图中b>a。
债券定价定理1:
债券价格与到期收益率成反向关系。
若到期收益率大于息票率,则债券价格低于面值,称为折价债券(discount bonds);
若到期收益率小于息票率,则债券价格高于面值,称为溢价债券(premium bonds);
若息票率等于到期收益率,则债券价格等于面值,称为平价债券(par bonds)。
对于可赎回债券,这一关系不成立。
债券定价定理4:
若债券期限一定,同等收益率变化下,债券收益率上升导致价格下跌的量,要小于收益率下降导致价格上升的量。
例:三债券的面值都为1000元,到期期限5年,息票率7%,当到期收益率变化时。
到期收益率(%) 6 7 8
价格 1042.12 1000 960.07
债券价格变化率(%) 4.21 0 -4.00
[编辑]凸性的性质
1、凸性随久期的增加而增加。若收益率、久期不变,票面利率越大,凸性越大。利率下降时,凸性增加。
2、对于没有隐含期权的债券来说,凸性总大于0,即利率下降,债券价格将以加速度上升;当利率上升时,债券价格以减速度下降。
3、含有隐含期权的债券的凸性一般为负,即价格随着利率的下降以减速度上升,或债券的有效持续期随利率的下降而缩短,随利率的上升而延长。因为利率下降时买入期权的可能性增加了。
来自"http://wiki.mbalib.com/wiki/%E5%87%B8%E6%80%A7"
❽ 凸性为正的债券是什么意思怎么看凸性的正负呢
凸性是对债券价格利率敏感性的二阶估计,是对债券久期利率敏感性的测量。在价格-收益率出现大幅度变动时,它们的波动幅度呈非线性关系。由持久期作出的预测将有所偏离。凸性就是对这个偏离的修正。它由以下公式定义: 无论收益率是上升还是下降,凸性所引起的修正都是正的。因此如果修正持久期相同,凸性越大越好。
❾ 利息率怎样影响债券凸性
凸性的性质是凸性随久期的增加而增加。若收益率、久期(即持续期)不变,票面利率越大,凸性越大。利率下降时,凸性增加。
对于第一句话,实际上就是说债券的市场收益率和债券的剩余期限一定,债券票面利率越低那么久期就越大(这是根据久期的性质),故此凸性越大。
对于第二句话,直接引用凸性的性质来说就是了。
必须注意的这两句话差异在于偿还期即债券的期限与持续期即久期是两个不同的时间概念。